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Chapter 1 
Modbus Protocol  
Introducing Modbus Protocol 

Two Serial Transmission Modes 

Modbus Message Framing 

Error Checking Methods 

1.1 Introducing Modbus Protocol 
Modicon programmable controllers can communicate with each other and with other devices over a 
variety of networks. Supported networks include the Modicon Modbus and Modbus Plus industrial 
networks, and standard networks such as MAP and Ethernet. Networks are accessed by built-in ports in 
the controllers or by network adapters, option modules, and gateways that are available from Schneider 
Automation. For original equipment manufacturers, Schneider Automation ModConnect partner programs 
are available for closely integrating networks like Modbus Plus into proprietary product designs. 

The common language used by all Modicon controllers is the Modbus protocol. This protocol defines a 
message structure that controllers will recognize and use, regardless of the type of networks over which 
they communicate. It describes the process a controller uses to request access to another device, how it 
will respond to requests from the other devices, and how errors will be detected and reported. It 
establishes a common format for the layout and contents of message fields. 

The Modbus protocol provides the internal standard that the Modicon controllers use for parsing 
messages. During communications on a Modbus network, the protocol determines how each controller 
will know its device address, recognize a message addressed to it, determine the kind of action to be 
taken, and extract any data or other information contained in the message. If a reply is required, the 
controller will construct the reply message and send it using Modbus protocol. 

On other networks, messages containing Modbus protocol are imbedded into the frame or packet structure 
that is used on the network. For example, Modicon network controllers for Modbus Plus or MAP, with 
associated application software libraries and drivers, provide conversion between the imbedded Modbus 
message protocol and the specific framing protocols those networks use to communicate between their 
node devices. 

This conversion also extends to resolving node addresses, routing paths, and error-checking methods 
specific to each kind of network. For example, Modbus device addresses contained in the Modbus 
protocol will be converted into node addresses prior to transmission of the messages. Error-checking 
fields will also be applied to message packets, consistent with each network's protocol. At the final point 
of delivery, however-for example, a controller-the contents of the imbedded message, written using 
Modbus protocol, define the action to be taken. 

Figure 1 shows how devices might be interconnected in a hierarchy of networks that employ widely 
differing communication techniques. In message transactions, the Modbus protocol imbedded into each 
network's packet structure provides the common language by which the devices can exchange data. 
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Figure 1 Overview of Modbus Protocol Application 

 

1.1.1 Transactions on Modbus Networks 
Standard Modbus ports on Modicon controllers use an RS-232C compatible serial interface that defines 
connector pinouts, cabling, signal levels, transmission baud rates, and parity checking. Controllers can be 
networked directly or via modems. 

Controllers communicate using a master-slave technique, in which only one device (the master) can 
initiate transactions (queries). The other devices (the slaves) respond by supplying the requested data to 
the master, or by taking the action requested in the query. Typical master devices include host processors 
and programming panels. Typical slaves include programmable controllers. 

The master can address individual slaves, or can initiate a broadcast message to all slaves. Slaves return a 
message (response) to queries that are addressed to them individually. Responses are not returned to 
broadcast queries from the master. 

The Modbus protocol establishes the format for the master's query by placing into it the device (or 
broadcast) address, a function code defining the requested action, any data to be sent, and an error-
checking field. The slave's response message is also constructed using Modbus protocol. It contains fields 
confirming the action taken, any data to be returned, and an error-checking field. If an error occurred in 
receipt of the message, or if the slave is unable to perform the requested action, the slave will construct an 
error message and send it as its response. 

 

1.1.2 Transactions on Other Kinds of Networks 
In addition to their standard Modbus capabilities, some Modicon controller models can communicate over 
Modbus Plus using built-in ports or network adapters, and over MAP, using network adapters. 
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On these networks, the controllers communicate using a peer-to-peer technique, in which any controller 
can initiate transactions with the other controllers. Thus a controller may operate either as a slave or as a 
master in separate transactions. Multiple internal paths are frequently provided to allow concurrent 
processing of master and slave transactions. 

At the message level, the Modbus protocol still applies the master-slave principle even though the 
network communication method is peer-to-peer. If a controller originates a message, it does so as a master 
device, and expects a response from a slave device. Similarly, when a controller receives a message it 
constructs a slave response and returns it to the originating controller. 

 

1.1.3 The Query-Response Cycle 

 

 
Figure 2 Master-Slave Query-Response Cycle 

 

The Query 
The function code in the query tells the addressed slave device what kind of action to perform. The data 
bytes contain any additional information that the slave will need to perform the function. For example, 
function code 03 will query the slave to read holding registers and respond with their contents. The data 
field must contain the information telling the slave which register to start at and how many registers to 
read. The error check field provides a method for the slave to validate the integrity of the message 
contents. 

 

The Response 
If the slave makes a normal response, the function code in the response is an echo of the function code in 
the query. The data bytes contain the data collected by the slave, such as register values or status. If an 
error occurs, the function code is modified to indicate that the response is an error response, and the data 
bytes contain a code that describes the error. The error check field allows the master to confirm that the 
message contents are valid. 

1.2 Two Serial Transmission Modes 
Controllers can be setup to communicate on standard Modbus networks using either of two transmission 
modes: ASCII or RTU. Users select the desired mode, along with the serial port communication 
parameters (baud rate, parity mode, etc), during configuration of each controller. The mode and serial 
parameters must be the same for all devices on a Modbus network. 
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The selection of ASCII or RTU mode pertains only to standard Modbus networks. It defines the bit 
contents of message fields transmitted serially on those networks. It determines how information will be 
packed into the message fields and decoded. 

On other networks like MAP and Modbus Plus, Modbus messages are placed into frames that are not 
related to serial tranasmission. For example, a request to read holding registers can be handled between 
two controllers on Modbus Plus without regard to the current setup of either controller's serial Modbus 
port. 

 

1.2.1 ASCII Mode 
When controllers are setup to communicate on a Modbus network using ASCII (American Standard Code 
for Information Interchange) mode, each eight-bit byte in a message is sent as two ASCII characters. The 
main advantage of this mode is that it allows time intervals of up to one second to occur between 
characters without causing an error. 

Coding System 
V Hexadecimal, ASCII characters 0 ... 9, A ... F 

V One hexadecimal character contained in each ASCII character of the message 

Bits per Byte 
V 1 start bit 

V 7 data bits, least significant bit sent first 

V 1 bit for even / odd parity-no bit for no parity 

V 1 stop bit if parity is used-2 bits if no parity 

Error Check Field 
V Longitudinal Redundancy Check (LRC) 

 

1.2.2 RTU Mode 
When controllers are setup to communicate on a Modbus network using RTU (Remote Terminal Unit) 
mode, each eight-bit byte in a message contains two four-bit hexadecimal characters. The main advantage 
of this mode is that its greater character density allows better data throughput than ASCII for the same 
baud rate. Each message must be transmitted in a continuous stream. 

Coding System 
V Eight-bit binary, hexadecimal 0 ... 9, A ... F 

V Two hexadecimal characters contained in each eight-bit field of the message 

Bits per Byte 
V 1 start bit 

V 8 data bits, least significant bit sent first 

V 1 bit for even / odd parity-no bit for no parity 

V 1 stop bit if parity is used-2 bits if no parity 
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Error Check Field 
V Cyclical Redundancy Check (CRC) 

1.3 Modbus Message Framing 
In either of the two serial transmission modes (ASCII or RTU), a Modbus message is placed by the 
transmitting device into a frame that has a known beginning and ending point. This allows receiving 
devices to begin at the start of the message, read the address portion and determine which device is 
addressed (or all devices, if the message is broadcast), and to know when the message is completed. 
Partial messages can be detected and errors can be set as a result. 

On networks like MAP or Modbus Plus, the network protocol handles the framing of messages with 
beginning and end delimiters that are specific to the network. Those protocols also handle delivery to the 
destination device, making the Modbus address field imbedded in the message unnecessary for the actual 
transmission. (The Modbus address is converted to a network node address and routing path by the 
originating controller or its network adapter.) 

 

1.3.1 ASCII Framing 
In ASCII mode, messages start with a colon ( : ) character (ASCII 3A hex), and end with a carriage 
return-line feed (CRLF) pair (ASCII 0D and 0A hex). 

The allowable characters transmitted for all other fields are hexadecimal 0 ... 9, A ... F. Networked 
devices monitor the network bus continuously for the colon character. When one is received, each device 
decodes the next field (the address field) to find out if it is the addressed device. 

Intervals of up to one second can elapse between characters within the message. If a greater interval 
occurs, the receiving device assumes an error has occurred. A typical message frame is shown below. 

 

 
Figure 3 ASCII Message Frame 

 

Exception 
With the 584 and 984A/B/X controllers, an ASCII message can normally terminate after the LRC field 
without the CRLF characters being sent. An interval of at least one second must then occur. If this 
happens, the controller will assume that the message terminated normally. 

 

1.3.2 RTU Framing 
In RTU mode, messages start with a silent interval of at least 3.5 character times. This is most easily 
implemented as a multiple of character times at the baud rate that is being used on the network (shown as 
T1-T2-T3-T4 in the figure below). The first field then transmitted is the device address. 

The allowable characters transmitted for all fields are hexadecimal 0 ... 9, A ... F. Networked devices 
monitor the network bus continuously, including during the silent intervals. When the first field (the 
address field) is received, each device decodes it to find out if it is the addressed device. 
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Following the last transmitted character, a similar interval of at least 3.5 character times marks the end of 
the message. A new message can begin after this interval. 

The entire message frame must be transmitted as a continuous stream. If a silent interval of more than 1.5 
character times occurs before completion of the frame, the receiving device flushes the incomplete 
message and assumes that the next byte will be the address field of a new message. 

Similarly, if a new message begins earlier than 3.5 character times following a previous message, the 
receiving device will consider it a continuation of the previous message. This will set an error, as the 
value in the final CRC field will not be valid for the combined messages. A typical message frame is 
shown below. 

 

 
 

Figure 4 RTU Message Frame 
 

1.3.3 How the Address Field is Handled 
The address field of a message frame contains two characters (ASCII) or eight bits (RTU). Valid slave 
device addresses are in the range of 0 ... 247 decimal. The individual slave devices are assigned addresses 
in the range of 1 ... 247. A master addresses a slave by placing the slave address in the address field of the 
message. When the slave sends its response, it places its own address in this address field of the response 
to let the master know which slave is responding. 

Address 0 is used for the broadcast address, which all slave devices recognize. When Modbus protocol is 
used on higher level networks, broadcasts may not be allowed or may be replaced by other methods. For 
example, Modbus Plus uses a shared global database that can be updated with each token rotation. 

 

1.3.4 How the Function Field is Handled 
The function code field of a message frame contains two characters (ASCII) or eight bits (RTU). Valid 
codes are in the range of 1 ... 255 decimal. Of these, some codes are applicable to all Modicon controllers, 
while some codes apply only to certain models, and others are reserved for future use. 

When a message is sent from a master to a slave device the function code field tells the slave what kind of 
action to perform. Examples are to read the ON / OFF states of a group of discrete coils or inputs; to read 
the data contents of a group of registers; to read the diagnostic status of the slave; to write to designated 
coils or registers; or to allow loading, recording, or verifying the program within the slave. 

When the slave responds to the master, it uses the function code field to indicate either a normal (error-
free) response or that some kind of error occurred (called an exception response). For a normal response, 
the slave simply echoes the original function code. For an exception response, the slave returns a code 
that is equivalent to the original function code with its most significant bit set to a logic 1. 

For example, a message from master to slave to read a group of holding registers would have the 
following function code: 
0000 0011               (Hexadecimal 03) 
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If the slave device takes the requested action without error, it returns the same code in its response. If an 
exception occurs, it returns: 

In addition to its modification of the function code for an exception response, the slave places a unique 
code into the data field of the response message. This tells the master what kind of error occurred, or the 
reason for the exception. 

The master device's application program has the responsibility of handling exception responses. Typical 
processes are to post subsequent retries of the message, to try diagnostic messages to the slave, and to 
notify operators. 

 

1.3.5 Contents of the Data Field 
The data field is constructed using sets of two hexadecimal digits, in the range of 00 to FF hexadecimal. 
These can be made from a pair of ASCII characters, or from one RTU character, according to the 
network's serial transmission mode. 

The data field of messages sent from a master to slave devices contains additional information which the 
slave must use to take the action defined by the function code. This can include items like discrete and 
register addresses, the quantity of items to be handled, and the count of actual data bytes in the field. 

For example, if the master requests a slave to read a group of holding registers (function code 03), the 
data field specifies the starting register and how many registers are to be read. If the master writes to a 
group of registers in the slave (function code 10 hexadecimal), the data field specifies the starting 
register, how many registers to write, the count of data bytes to follow in the data field, and the data to be 
written into the registers. 

If no error occurs, the data field of a response from a slave to a master contains the data requested. If an 
error occurs, the field contains an exception code that the master application can use to determine the next 
action to be taken. 

The data field can be nonexistent (of zero length) in certain kinds of messages. For example, in a request 
from a master device for a slave to respond with its communications event log (function code 0B 
hexadecimal), the slave does not require any additional information. The function code alone specifies the 
action. 

 

1.3.6 Contents of the Error Checking Field 
Two kinds of error-checking methods are used for standard Modbus networks. The error checking field 
contents depend upon the method that is being used. 

ASCII 
When ASCII mode is used for character framing, the error checking field contains two ASCII characters. 
The error check characters are the result of a Longitudinal Redundancy Check (LRC) calculation that is 
performed on the message contents, exclusive of the beginning colon and terminating CRLF characters. 

The LRC characters are appended to the message as the last field preceding the CRLF characters. 

RTU 
When RTU mode is used for character framing, the error checking field contains a 16-bit value 
implemented as two eight-bit bytes. The error check value is the result of a Cyclical Redundancy Check 
calculation performed on the message contents. 

1000 0011               (Hexadecimal 83) 
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The CRC field is appended to the message as the last field in the message. When this is done, the low-
order byte of the field is appended first, followed by the high-order byte. The CRC high-order byte is the 
last byte to be sent in the message. 

Additional information about error checking is contained later in this chapter. Detailed steps for 
generating LRC and CRC fields can be found in Chapter . 

 

1.3.7 How Characters are Transmitted Serially 
When messages are transmitted on standard Modbus serial networks, each character or byte is sent in this 
order (left to right): 

With ASCII character framing, the bit sequence is: 

 

 
 

Figure 5 Bit Order (ASCII) 

 
With RTU character framing, the bit sequence is: 

 

 
 

Figure 6 Bit Order (RTU) 

1.4 Error Checking Methods 
Standard Modbus serial networks use two kinds of error checking. Parity checking (even or odd) can be 
optionally applied to each character. Frame checking (LRC or CRC) is applied to the entire message. 
Both the character check and message frame check are generated in the master device and applied to the 
message contents before transmission. The slave device checks each character and the entire message 
frame during receipt. 

The master is configured by the user to wait for a predetermined timeout interval before aborting the 
transaction. This interval is set to be long enough for any slave to respond normally. If the slave detects a 
transmission error, the message will not be acted upon. The slave will not construct a response to the 
master. Thus the timeout will expire and allow the master's program to handle the error. 

Least Significant Bit (LSB) ... Most Significant Bit  
(MSB) 
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Note: A message addressed to a nonexistent slave device will also cause a timeout. 

Other networks such as MAP or Modbus Plus use frame checking at a level above the Modbus contents of 
the message. On those networks, the Modbus message LRC or CRC check field does not apply. In the 
case of a transmission error, the communication protocols specific to those networks notify the 
originating device that an error has occurred, and allow it to retry or abort according to how it has been 
setup. If the message is delivered, but the slave device cannot respond, a timeout error can occur which 
can be detected by the master's program. 

 

1.4.1 Parity Checking 
Users can configure controllers for Even or Odd Parity checking, or for No Parity checking. This will 
determine how the parity bit will be set in each character. 

If either Even or Odd Parity is specified, the quantity of 1 bits will be counted in the data portion of each 
character (seven data bits for ASCII mode, or eight for RTU). The parity bit will then be set to a 0 or 1 to 
result in an Even or Odd total of 1 bits. For example, these eight data bits are contained in an RTU 
character frame: 

The total quantity of 1 bits in the frame is four. If Even Parity is used, the frame's parity bit will be a 0, 
making the total quantity of 1 bits still an even number (four). If Odd Parity is used, the parity bit will be 
a 1, making an odd quantity (five). 

When the message is transmitted, the parity bit is calculated and applied to the frame of each character. 
The receiving device counts the quantity of 1 bits and sets an error if they are not the same as configured 
for that device (all devices on the Modbus network must be configured to use the same parity check 
method). 

Note that parity checking can only detect an error if an odd number of bits are picked up or dropped in a 
character frame during transmission. For example, if Odd Parity checking is employed, and two 1 bits are 
dropped from a character containing three 1 bits, the result is still an odd count of 1 bits. 

If No Parity checking is specified, no parity bit is transmitted and no parity check can be made. An 
additional stop bit is transmitted to fill out the character frame. 

  

1.4.2 LRC Checking 
In ASCII mode, messages include an error-checking field that is based on a LRC method. The LRC field 
checks the contents of the message, exclusive of the beginning colon and ending CRLF pair. It is applied 
regardless of any parity check method used for the individual characters of the message. 

The LRC field is one byte, containing an eight-bit binary value. The LRC value is calculated by the 
transmitting device, which appends the LRC to the message. The receiving device calculates an LRC 
during receipt of the message, and compares the calculated value to the actual value it received in the 
LRC field. If the two values are not equal, an error results. 

The LRC is calculated by adding together successive eight-bit bytes of the message, discarding any 
carries, and then two's complementing the result. It is performed on the ASCII message field contents 
excluding the colon character that begins the message, and excluding the CRLF pair at the end of the 
message. 

1100 0101 
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In ladder logic, the CKSM function calculates a LRC from the message contents. For applications using 
host computers, a detailed example of LRC generation is contained in Appendix C. 

 

1.4.3 CRC Checking 
In RTU mode, messages include an error-checking field that is based on a CRC method. The CRC field 
checks the contents of the entire message. It is applied regardless of any parity check method used for the 
individual characters of the message. 

The CRC field is two bytes, containing a 16-bit binary value. The CRC value is calculated by the 
transmitting device, which appends the CRC to the message. The receiving device recalculates a CRC 
during receipt of the message, and compares the calculated value to the actual value it received in the 
CRC field. If the two values are not equal, an error results. 

The CRC is started by first preloading a 16-bit register to all 1's. Then a process begins of applying 
successive eight-bit bytes of the message to the current contents of the register. Only the eight bits of data 
in each character are used for generating the CRC. Start and stop bits, and the parity bit, do not apply to 
the CRC. 

During generation of the CRC, each eight-bit character is exclusive ORed with the register contents. Then 
the result is shifted in the direction of the least significant bit (LSB), with a zero filled into the most 
significant bit (MSB) position. The LSB is extracted and examined. If the LSB was a 1, the register is 
then exclusive ORed with a preset, fixed value. If the LSB was a 0, no exclusive OR takes place. 

This process is repeated until eight shifts have been performed. After the last (eighth) shift, the next eight-
bit byte is exclusive ORed with the register's current value, and the process repeats for eight more shifts 
as described above. The final contents of the register, after all the bytes of the message have been applied, 
is the CRC value. 

When the CRC is appended to the message, the low-order byte is appended first, followed by the high-
order byte. 

In ladder logic, the CKSM function calculates a CRC from the message contents. For applications using 
host computers, a detailed example of CRC generation is given on page . 
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Chapter 2 
Data and Control Functions  
Modbus Function Formats 

Function Codes 

Read Holding Registers 

Force Single Coil 

Preset Single Register 

2.1 Modbus Function Formats 
 

 
Note: Unless specified otherwise, numerical values (such as addresses, codes, or data) are expressed as 
decimal values in the text of this section. They are expressed as hexadecimal values in the message fields 
of the figures. 

 

2.1.1 Data Addresses in Modbus Messages 
All data addresses in Modbus messages are referenced to zero. The first occurrence of a data item is 
addressed as item number zero. For example: 

V Coil 1 in a programmable controller is addressed as coil 0000 in the data address field of a Modbus 
message 

V Coil 127 decimal is addressed as coil 007E hex (126 decimal) 

V Holding register 40001 is addressed as register 0000 in the data address field of the message. The 
function code field already specifies a holding register operation. Therefore the 4x reference is implicit. 

V Holding register 40108 is addressed as register 006B hex (107 decimal) 

 

2.1.2 Field Contents in Modbus Messages 

The following tables show examples of a Modbus query and normal response. Both examples 
show the field contents in hexadecimal, and also show how a message could be framed in ASCII 
or in RTU mode.  
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Query 

 

 
 
Response 

 

 

 
 
  

 
Note: The message specifies the starting register address as 0107 (006B hex). 

The slave response echoes the function code, indicating this is a normal response. The Byte Count field 
specifies how many eight-bit data items are being returned. It shows the count of eight-bit bytes to follow 
in the data, for either ASCII or RTU. With ASCII, this value is half the actual count of ASCII characters 
in the data. In ASCII, each four-bit hexadecimal value requires one ASCII character, therefore two ASCII 
characters must follow in the message to contain each eight-bit data item. 

For example, the value 63 hex is sent as one eight-bit byte in RTU mode (01100011). The same value sent 
in ASCII mode requires two bytes, for ASCII 6 (0110110) and 3 (0110011). The Byte Count field counts 
this data as one eight-bit item, regardless of the character framing method (ASCII or RTU). 

How to Use the Byte Count Field 
When you construct responses in buffers, use a Byte Count value that equals the count of eight-bit bytes 
in your message data. The value is exclusive of all other field contents, including the Byte Count field. 

 listed in decimal; Y indicates that the function is supported, and N indicates that it is not supported. 
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2.2.3 03 Read Holding Registers 

Reads the binary contents of holding registers (4x references) in the slave. Broadcast is not supported. 
The maximum parameters supported by various controller models are listed on page . 

Query 
The query message specifies the starting register and quantity of registers to be read. Registers are 
addressed starting at zero- registers 1 ... 16 are addressed as 0 ... 15. 

Here is an example of a request to read registers 40108 ... 40110 from slave device 17: 

 

 
 

Response 
The register data in the response message are packed as two bytes per register, with the binary contents 
right justified within each byte. For each register, the first byte contains the high order bits and the second 
contains the low order bits. 

Data is scanned in the slave at the rate of 125 registers per scan for 984-X8X controllers (984-685, etc), 
and at the rate of 32 registers per scan for all other controllers. The response is returned when the data is 
completely assembled. 

Here is an example of a response to the query: 
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The contents of register 40108 are shown as the two byte values of 02 2B hex, or 555 decimal. The 
contents of registers 40109 ... 40110 are 00 00 and 00 64 hex, or 0 and 100 decimal. 

2.2.5 05 Force Single Coil 
Forces a single coil (0x reference) to either ON or OFF. When broadcast, the function forces the same 
coil reference in all attached slaves. The maximum parameters supported by various controller models are 
listed on page . 

 
 

Note: The function will override the controller's memory protect state and the coil's disable state. The 
forced state will remain valid until the controller's logic next solves the coil. The coil will remain forced 
if it is not programmed in the controller's logic. 

Query 
The query message specifies the coil reference to be forced. Coils are addressed starting at zero-coil 1 is 
addressed as 0. 

The reguested ON / OFF state is specified by a constant in the query data field. A value of FF 00 hex 
requests the coil to be ON. A value of 00 00 requests it to be OFF. All other values are illegal and will not 
affect the coil. 

Here is an example of a request to force coil 173 ON in slave device 17: 

 

 
 

Response 

The normal response is an echo of the query, returned after the coil state has been forced. 

Here is an example of a response to the query: 
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2.2.6 06 Preset Single Register 
Presets a value into a single holding register (4x reference). When broadcast, the function presets the 
same register reference in all attached slaves. The maximum parameters supported by various controller 
models are listed on page . 

 
 

Note: The function will override the controller's memory protect state. The preset value will remain valid 
in the register until the controller's logic next solves the register contents. The register's value will remain 
if it is not programmed in the controller's logic. 

Query 
The query message specifies the register reference to be preset. Registers are addressed starting at zero-
register 1 is addressed as 0. 

The reguested preset value is specified in the query data field. M84 and 484 controllers use a 10-bit 
binary value, with the six high order bits set to zeros. All other controllers use 16-bit values. 

Here is an example of a request to preset register 40002 to 00 03 hex in slave device 17: 

 

 
 

Response 
The normal response is an echo of the query, returned after the register contents have been preset. 

Here is an example of a response to the query: 
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Chapter 4 
Exception Responses 
 
Exception Responses 

Exception Codes 

4.1 Exception Responses 
Except for broadcast messages, when a master device sends a query to a slave device it expects a normal 
response. One of four possible events can occur from the master's query: 

V If the slave device receives the query without a communication error, and can handle the query 
normally, it returns a normal response. 

V If the slave does not receive the query due to a communication error, no response is returned. The 
master program will eventually process a timeout condition for the query. 

V If the slave receives the query, but detects a communication error (parity, LRC, or CRC), no response is 
returned. The master program will eventually process a timeout condition for the query. 

V If the slave receives the query without a communication error, but cannot handle it (for example, if the 
request is to read a nonexistent coil or register), the slave will return an exception response informing the 
master of the nature of the error. 

The exception response message has two fields that differentiate it from a normal response: 

Function Code Field 

In a normal response, the slave echoes the function code of the original query in the function code field of 
the response. All function codes have a most significant bit (MSB) of 0 (their values are all below 80 
hexadecimal). In an exception response, the slave sets the MSB of the function code to 1. This makes the 
function code value in an exception response exactly 80 hexadecimal higher than the value would be for a 
normal response. 

With the function code's MSB set, the master's application program can recognize the exception response 
and can examine the data field for the exception code. 

Data Field 

In a normal response, the slave may return data or statistics in the data field (any information that was 
requested in the query). In an exception response, the slave returns an exception code in the data field. 
This defines the slave condition that caused the exception. Here is an example of a master query and slave 
exception response. The field examples are shown in hexadecimal. 
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In this example, the master addresses a query to slave device 10 (0A hex). The function code (01) is for a 
Read Coil Status operation. It requests the status of the coil at address 1245 (04A1 hex). 

 
 

Note: Only one coil is to be read, as specified by the number of coils field (0001). 

If the coil address is nonexistent in the slave device, the slave will return the exception response with the 
exception code shown (02). This specifies an illegal data address for the slave. For example, if the slave is 
a 984-385 with 512 coils, this code would be returned. 
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4.2 Exception Codes 
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Chapter 6 
LRC / CRC Generation  
LRC Generation 

CRC Generation 

6.1 LRC Generation 
The Longitudinal Redundancy Check (LRC) field is one byte, containing an eight-bit binary value. The 
LRC value is calculated by the transmitting device, which appends the LRC to the message. The receiving 
device recalculates an LRC during receipt of the message, and compares the calculated value to the actual 
value it received in the LRC field. If the two values are not equal, an error results. 

The LRC is calculated by adding together successive eight-bit bytes in the message, discarding any 
carries, then two's complementing the result. The LRC is an eight-bit field, therefore each new addition of 
a character that would result in a value higher than 255 decimal simply rolls over the field's value through 
zero. Because there is no ninth bit, the carry is discarded automatically. 

Generating an LRC 
Step 1 Add all bytes in the message, excluding the starting colon and ending CRLF. Add them into an 
eight-bit field, so that carries will be discarded. 

Step 2 Subtract the final field value from FF hex (all 1's), to produce the ones-complement. 

Step 3 Add 1 to produce the two's-complement. 

 

Placing the LRC into the Message 

When the the eight-bit LRC (two ASCII characters) is transmitted in the message, the high order character 
will be transmitted first, followed by the low order character-e.g., if the LRC value is 61 hex (0110 0001): 

 

 
 

Figure 8 LRC Character Sequence 

Example 
An example of a C language function performing LRC generation is shown below. The function takes two 
arguments: 

The function returns the LRC as a type unsigned char. 

unsigned char *auchMsg ;        A pointer to the message buffer containing binary 

                                data to be used for generating the LRC 

unsigned short usDataLen ;      The quantity of bytes in the message buffer. 
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LRC Generation Function 

6.2 CRC Generation 
The Cyclical Redundancy Check (CRC) field is two bytes, containing a 16-bit binary value. The CRC 
value is calculated by the transmitting device, which appends the CRC to the message. The receiving 
device recalculates a CRC during receipt of the message, and compares the calculated value to the actual 
value it received in the CRC field. If the two values are not equal, an error results. 

The CRC is started by first preloading a 16-bit register to all 1's. Then a process begins of applying 
successive eight-bit bytes of the message to the current contents of the register. Only the eight bits of data 
in each character are used for generating the CRC. Start and stop bits, and the parity bit, do not apply to 
the CRC. 

During generation of the CRC, each eight-bit character is exclusive ORed with the register contents. The 
result is shifted in the direction of the least significant bit (LSB), with a zero filled into the most 
significant bit (MSB) position. The LSB is extracted and examined. If the LSB was a 1, the register is 
then exclusive ORed with a preset, fixed value. If the LSB was a 0, no exclusive OR takes place. 

This process is repeated until eight shifts have been performed. After the last (eighth) shift, the next eight-
bit character is exclusive ORed with the register's current value, and the process repeats for eight more 
shifts as described above. The final contents of the register, after all the characters of the message have 
been applied, is the CRC value. 

 

Generating a CRC 

Step 1 Load a 16-bit register with FFFF hex (all 1's). Call this the CRC register. 

Step 2 Exclusive OR the first eight-bit byte of the message with the low order byte of the 16-bit CRC 
register, putting the result in the CRC register. 

Step 3 Shift the CRC register one bit to the right (toward the LSB), zerofilling the MSB. Extract and 
examine the LSB. 

Step 4 If the LSB is 0, repeat Step 3 (another shift). If the LSB is 1, Exclusive OR the CRC register with 
the polynomial value A001 hex (1010 0000 0000 0001). 

Step 5 Repeat Steps 3 and 4 until eight shifts have been performed. When this is done, a complete eight-
bit byte will have been processed. 

Step 6 Repeat Steps 2 ... 5 for the next eight-bit byte of the message. Continue doing this until all bytes 
have been processed. 

static unsigned char LRC(auchMsg, usDataLen) 

unsigned char *auchMsg ;                /* message to calculate  */ 
unsigned short usDataLen ;              /* LRC upon quantity of  */ 
/* bytes in message      */ 

{ 
        unsigned char uchLRC = 0 ;      /* LRC char initialized   */ 

        while (usDataLen--)             /* pass through message  */  
                uchLRC += *auchMsg++ ;  /* buffer add buffer byte*/  
        /* without carry         */ 

        return ((unsigned char)(-((char_uchLRC))) ; 
        /* return twos complemen */ 
} 
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Result The final contents of the CRC register is the CRC value. 

Step 7 When the CRC is placed into the message, its upper and lower bytes must be swapped as described 
below. 

Placing the CRC into the Message 
When the 16-bit CRC (two eight-bit bytes) is transmitted in the message, the low order byte will be 
transmitted first, followed by the high order byte-e.g., if the CRC value is 1241 hex (0001 0010 0100 
0001): 

 

 
 

Figure 9 CRC Byte Sequence 

Example 
An example of a C language function performing CRC generation is shown on the following pages. All of 
the possible CRC values are preloaded into two arrays, which are simply indexed as the function 
increments through the message buffer. One array contains all of the 256 possible CRC values for the 
high byte of the 16-bit CRC field, and the other array contains all of the values for the low byte. 

Indexing the CRC in this way provides faster execution than would be achieved by calculating a new 
CRC value with each new character from the message buffer. 

 
 

Note: This function performs the swapping of the high/low CRC bytes internally. The bytes are already 
swapped in the CRC value that is returned from the function. Therefore the CRC value returned from the 
function can be directly placed into the message for transmission. 

The function takes two arguments: 

The function returns the CRC as a type unsigned short. 

unsigned char *puchMsg ;        A pointer to the message buffer containing binary 

                                data to be used for generating the CRC 

unsigned short usDataLen ;      The quantity of bytes in the message buffer. 
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CRC Generation Function 

 

High Order Byte Table 

unsigned short CRC16(puchMsg, usDataLen) 

unsigned char *puchMsg ;                /* message to calculate CRC upon */ 
unsigned short usDataLen ;              /* quantity of bytes in message  */ 

{ 
        unsigned char uchCRCHi = 0xFF ; /* high CRC byte initialized */ 
        unsigned char uchCRCLo = 0xFF ; /* low CRC byte initialized  */ 
        unsigned uIndex ;               /* will index into CRC lookup*/ 
 

        /* table   */ 

        while (usDataLen--)             /* pass through message buffer */ 
                { 
                uIndex = uchCRCHi ^ *puchMsgg++ ;       /* calculate the CRC */ 
                uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex} ; 
                uchCRCLo = auchCRCLo[uIndex] ; 
                } 

        return (uchCRCHi << 8 | uchCRCLo) ; 
} 
 

/* Table of CRC values for high-order byte */ 

static unsigned char auchCRCHi[] = { 
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,  
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,  
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,  
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,  
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,  
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,  
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,  
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,  
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,  
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,  
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,  
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,  
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,  
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,  
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,  
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,  
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,  
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,  
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,  
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,  
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,  
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,  
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,  
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,  
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,  
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 
} ;  
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Low Order Byte Table 
/* Table of CRC values for low-order byte */ 

static char auchCRCLo[] = { 
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06,  
0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,  
0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,  
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,  
0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,  
0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,  
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3,  
0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,  
0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,  
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,  
0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,  
0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,  
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60,  
0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,  
0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,  
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,  
0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E,  
0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,  
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,  
0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,  
0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,  
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,  
0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,  
0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,  
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,  
0x43, 0x83, 0x41, 0x81, 0x80, 0x40 
} ; 
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